

Mark Scheme (Results)

Summer 2019

Pearson International Advanced Subsidiary Level In Chemistry (WCH12) Paper 01 Energetics, Group Chemistry, Halogenoalkanes and Alcohols

Section A (Multiple Choice)

Question number	Answer	Mark
1	The only correct answer is B (pressure)	(1)
	A is not correct because concentration of the acid does affect the rate of reaction	
	C is not correct because surface area of the solid does affect the rate of reaction	
	D is not correct because temperature does affect the rate of reaction	

Question number		Answer	Mark
2	The o	only correct answer is D (64)	(1)
	A	is not correct because it assumes the relationship between temperature and rate is linear	
	В	is not correct because it suggests a rate increase of 6 x 2	
	С	is not correct because it suggests a rate increase of 6² instead of 26	

Question number	Answer	Mark
3	The only correct answer is A	(1)
	Concentration	
	time	
	B is not correct because it shows the concentration of both reactants and products decreasing	
	c is not correct because both concentration of reactants and products are still changing	
	D is not correct because concentrations of P and Q remain unchanged	

Question number	Answer	Mark
4	The only correct answer is D $(2NOCl(g) \rightleftharpoons 2NO(g) + Cl_2(g))$	(1)
	A is not correct because the equilibrium will move to the left hand side (more molecules)	
	B is not correct because the equilibrium will not change as both sides have the same number of molecules	
	C is not correct because the equilibrium will move to the left hand side (more molecules)	

Question number	Answer	Mark
5	The only correct answer is C (hydrogen chloride is formed in the reaction)	(1)
	A is not correct because chlorine does not increase oxidation state when HCl (misty fumes) forms	
	B is not correct because sulfur does not increase oxidation state when HCl (misty fumes) forms	
	D is not correct because chlorine will not be evident as misty fumes and does not form in the reaction	

Question number	Answer	Mark
6	The only correct answer is C (+6)	(1)
	A is not correct because the oxidation number of S in a compound is not always −2	
	B is not correct because this is the value for the SO_3^{2-} ion	
	D is not correct because the sum of all the oxidation states should be equal to the charge on the ion, not 0	

Question	Answer	Mark
number		
7	The only correct answer is B $(6NaOH + 3Br_2 \rightarrow 5NaBr + NaBrO_3 + 3H_2O)$	(1)
	A is not correct because it is a neutralisation reaction	
	C is not correct because only Al is oxidised and only H is reduced	
	D is not correct because no oxidation numbers change	

Question number	Answer	Mark
8	The only correct answer is B (BaSO ₄)	(1)
	A is not correct because solubility of sulfates decreases down Group 2 and Ca is above Ba	
	C is not correct because Group 1 sulfates are soluble	
	D is not correct because Group 1 sulfates are soluble	

Question number	Answer	Mark
9	The only correct answer is B (-75 kJ mol ⁻¹)	(1)
	A is not correct because the 2 equations have been added together	
	C is not correct because the second equation has been subtracted from the first equation	
	D is not correct because both equations have been reversed and added together	

Question number	Answer	Mark
10	The only correct answer is B (-122)	(1)
	A is not correct because it is the sum of formation of all product and reactant bonds	
	C is not correct because the energy to break the bonds is less than the energy released when the new bonds form	
	D is not correct because it is the sum of breaking all product and reactant bonds	

Question number	Answer	Mark
11	The only correct answer is C $(\frac{1}{2} Br_2(I) \rightarrow Br(g))$	(1)
	A is not correct because 2 moles of Br atoms form and Br_2 is in gaseous state	
	B is not correct because 2 moles of Br atoms form	
	D is not correct because Br₂ is in gaseous state	

Question number	Answer	Mark
12	The only correct answer is A (an increase of 6.0°C)	(1)
	B is not correct because neutralisation reactions are exothermic, so temperature will rise not fall	
	C is not correct because the total volume of solution is 100 cm³, not 50 cm³	
	D is not correct because neutralisation reactions are exothermic, so temperature will rise not fall and because the total volume of solution is 100 cm ³ , not 50 cm ³	

Question number	Answer	Mark
13	The only correct answer is A (NH ₄ ⁺)	(1)
	B is not correct because the carbon has a lone pair of electrons	
	C is not correct because the oxygen has a lone pair of electrons	
	D is not correct because the nitrogen has a lone pair of electrons	

Question	Answer	Mark
number		
14	The only correct answer is A B is not correct because it is an isomer with 1 branch, so lower London forces C is not correct because it is an isomer with 2 branches, so lower London forces D is not correct because it is an isomer with 3 branches, so lower London forces	(1)

Question number	Answer	Mark
15(a)	The only correct answer is C (strontium bromide)	(1)
	A is not correct because the chloride will give a white precipitate	
	B is not correct because the chloride will give a white precipitate	
	D is not correct because the barium will give a green flame	

Question number	Answer			
15(b)	The only correct answer is <i>D</i> (red light is emitted as electrons return to lower energy levels)	(1)		
	A is not correct because the electrons absorb heat as they are promoted			
	B is not correct because the electrons emit light when they return to ground state			
	$m{c}$ is not correct because light energy is emitted when the electrons return to the ground state			

Question number	Answer			
16(a)	The only correct answer is C (H-H bond enthalpy is greater than Si-H bond enthalpy)	(1)		
	4 is not correct because hydrogen bonding does explain why ice has a lower density than water			
	B is not correct because hydrogen bonding does explain why HF has a higher boiling temperature then HCl			
	D is not correct because hydrogen bonding does explain why alcohols are less volatile than similar alkanes			

Question number	Answer	Mark
16(b)	The only correct answer is A	(1)
	B is not correct because the 2 water molecules do not form a hydrogen bond between two hydrogen atoms	
	C is not correct because the hydrogen bond angle is not 104.5°	
	D is not correct because the angle between 2 water molecules should be 180° and water molecules should not have a bond angle of 180°	

Question number	Answer	Mark
17	The only correct answer is B $(d \div a)$	(1)
	A is not correct because it is not a gradient of a tangent and is inverse of the rate	
	C is not correct because it is the average rate	
	D is not correct because it is the initial rate	

Question number	Answer	Mark
18	The only correct answer is D (CH ₃ CH ₂ COOH)	(1)
	A is not correct because it will not have a major peak at $m/z = 57$	
	B is not correct because it will not have a major peak at $m/z = 57$	
	C is not correct because it will not have a major peak at m/z = 57	

Total for Section A = 20 marks

Section B

Question Number	Answe	er	Additional guidance	Mark
19(a)(i)	• $2l^- \rightarrow l_2 + 2e^{(-)}$	(1)	Allow $2I^ 2e^{(-)} \rightarrow I_2$	(2)
	• $2H^+ + 2e^- + H_2O_2 \rightarrow 2H_2O$	(1)		
			Ignore state symbols, even if incorrect	
			Allow multiples	
			Allow equations in either order	

Question Number	Answer	Additional guidance	Mark
19(a)(ii)	$2I^{-} + 2H^{+} + H_{2}O_{2} \rightarrow I_{2} + 2H_{2}O$	Ignore state symbols, even if incorrect	(1)
	OR	Allow multiples	
	$2HI + H_2O_2 \rightarrow I_2 + 2H_2O$	No TE from (a)(i)	
		Do not award uncancelled electrons	

Question Number	Answer		Additional guidance	Mark
19(b)(i)	An answer that makes reference to the following points:			(2)
	(pale) yellow aqueous layer	(1)	Do not award just 'brown' / colourless / orange	
			allow light brown / pale brown / yellow- brown / straw	
	Pink cyclohexane layer	(1)	Allow purple / violet	
			Do not award red / grey	

Question Number	Answer	Additional guidance	Mark
19(b)(ii)	An explanation that makes reference to the following points:		(2)
	Cyclohexane and iodine form London forces (between molecules) (1)	Allow 'van der Waals' / dispersion forces / instantaneous dipole – induced dipole forces	
	Hydrogen bonds between water molecules are stronger than London forces (between iodine and water molecules so less soluble in aqueous layer) (1)	Allow 'Hydrogen bonds in water are strong'	
		Allow one mark for answers that compare type of attraction without any reference to magnitude or answers based solely on polarity	
		e.g. Just 'iodine forms London forces with cyclohexane but cannot form hydrogen bonds with water' scores 1 mark	
		'iodine and cyclohexane are non-polar, but water is polar' scores 1	
		e.g. 'Intermolecular forces formed by iodine and water are weaker than intermolecular forces in water' scores 1	

Question Number	Answer	Additional guidance	Mark
19(c)	(Anhydrous) sodium sulfate /Na ₂ SO ₄ / magnesium sulfate / MgSO ₄ / calcium chloride / CaCl ₂ / calcium sulfate / CaSO ₄ / calcium oxide /	Allow silica gel	(1)
	CaO	Do not award concentrated sulfuric acid / phosphoric acid	
		Do not award CuSO ₄ / CaCO ₃	

(Total for Question 19 = 8 marks)

Question Number	Answer	Additional guidance	Mark
20(a)(i)	 magnesium nitrate decomposes / breaks down (when heated with a Bunsen burner) 	Ignore references to evaporation	(1)
		Do not award 'reacts with oxygen' Do not award just the idea that magnesium nitrate reacts	
		Ignore products of decomposition even if incorrect	
		Ignore 'spitting' / any references to removing water too quickly	

Question Number		Answer		Additional guidance	Mark
20(a)(ii)	•	calculate mass of water removed	(1)	Example of calculation 5.12 – 2.97 = 2.15 g	(4)
	•	calculates moles of water removed	(1)	2.15 / 18 = 0.11944 (mol) M1 could be subsumed in M2	
	•	calculates moles of anhydrous magnesium nitrate	(1)	2.97/148.3 = 0.0200 (mol)	
	•	deduces x	(1)	0.11944:0.0200 = 6:1 so x = 6 (must be integer)	
	OR •	calculates moles of anhydrous magnesium nitrate	(1)	2.97/148.3 = 0.0200 (mol)	
	•	Calculates Mr of hydrated salt	(1)	5.12/0.0200 = 256	
	•	Writes expression to find x in terms of mass and M	(1)	148.3 + 18x = 256	
	•	deduces x	(1)	x = 6 (must be integer)	
				Allow TE at each step	
				Correct answer with no working scores M4 only	
				Ignore SF apart from M4, which must be 1SF	

Question Number	Answer		Additional guidance	Mark
20(b)(i)	An explanation that makes reference to the following	points:		(2)
	 large(r) amount of energy required to break io lattice / MgCO₃ / solid) (1) 	nic bonds (in	Do not award molecules / atoms / London forces	
	 small(er) amount of energy released during hy ions) / when ions form bonds to water 	dration (of (1)	Ignore references to H bonds	
	OR			
	Lattice energy is more exothermic	(1)		
	than the hydration enthalpies	(1)	If no other mark is awarded allow 1 for 'lattice energy is greater than hydration enthalpy'	

Question Number	Answer		Additional guidance	Mark
20(b)(ii)			Example of calculation:	(2)
	application of Hess's Law	(1)	+(-394 -602) + 1096	
	 calculation of Δ_fH^e 	(1)	(+) 100 (kJ mol ⁻¹)	
			Correct answer with no working scores 2 marks	
			- 100 (kJ mol ⁻¹) scores 1 mark (+) 702 (kJ mol ⁻¹) scores 1 mark (+) 494 (kJ mol ⁻¹) scores 1 mark - 2092 (kJ mol ⁻¹) scores 1 mark (+) 2092 (kJ mol ⁻¹) scores 1 mark	
			Ignore units even if incorrect	

Question Number	Answer	Additional guidance	Mark
20(b)(iii)	An explanation that makes reference to the following points	Accept reverse argument	(4)
	 Group 2 carbonates increase in (thermal) stability as you go down the group (1) 	Each marking point is independent	
	• size of the (metal) ion increases / charge density (of ion) decreases (1)	Ignore 'atomic radius"	
	so metal ion is less polarising		
	or		
	(electron cloud of) anion less distorted (1)		
	 so weakens (covalent) bonds in carbonate ion less / more energy needed to break (covalent) bonds in carbonate (1) 	Allow C-O or C=O as alternative for 'bonds in carbonate'	

(Total for Question 20 = 13 marks)

Question Number	Answer	Additional guidance	Mark
21(a)(i)	• water / H₂O / aqueous	Do not award just ethanol / alcohol But allow 'water and ethanol'	(1)

Question Number	Answer	Additional guidance	Mark
21(a)(ii)	correct mechanism name and type	Nucleophilic substitution	(1)
		Allow nucleophile for nucleophilic	
		Ignore S _N 2 or S _N 1	
		Ignore hydrolysis	

Question Number	Answer	Additional guidance Mar	rk
21(a)(iii)	A mechanism that shows: dipole on C-Cl bond and arrow from bond to Cl or just beyond (1)	(3))
	 arrow from lone pair on OH⁻ ion to carbon (1) 	Ignore S_N 2 transition state Do not award M2 if covalent bond in KOH	
	• both products $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Allow KCl as a product if KOH or K ⁺ is shown on LHS Allow skeletal formulae / C ₃ H ₇ CH ₂ Cl Penalise use of half arrows once only in M1 and M2	
	H C H C OH + CI -		

Question Number	Answer		Additional guidance	Mark
21 (b)			Example of calculation	(4)
	moles of alcohol formed	(1)	12.1 / 74.0 = 0.16351 (mol)	
	 moles of 1-chlorobutane required 	(1)	(0.16351/64) x 100 = 0.25549 (mol)	
	mass of 1-chlorobutane required	(1)	0.25549 x 92.5 = 23.633 (g)	
	 volume of 1-chlorobutane required, to 2 or 3SF 	(1)	23.633 / 0.886 = 26.674 = 26.7 / 27 (cm ³)	
			Correct answer with no working scores 4 marks	
			Allow TE at each step	
			Ignore rounding in steps 1-3	
			Ignore SF except 1 SF in steps 1-3	
			Units, if given, must be correct in M4	

(Total for Question 21 = 9 marks)

Question Number	Answer		Additional guidance	Mark
22 (a)	An answer that makes reference to the following poin	swer that makes reference to the following points:		(2)
	 add PCl₅ / phosphorus(V) chloride /phosphorus (1) 	PCl ₅ / phosphorus(V) chloride /phosphorus pentachloride		
	misty fumes evolved (that turn damp blue litme white smoke with ammonia)	misty fumes evolved (that turn damp blue litmus red / form white smoke with ammonia) (1)		
	OR		Do not award white smoke unless in conjunction with exposure of fumes to ammonia	
		(4)		
	Add sodium / Na	(1)		
	Effervescence / bubbles seen / fizzing	(1)	Ignore gas given off / hydrogen given off	
	OR			
	Add Lucas' Reagent	(1)	Do not award boot with acidified	
	Solution turns cloudy immediately / quickly	(1)	Do not award heat with acidified dichromate(VI) ions	

Question Number	Answer	Additional guidance	Mark
22 (b)(i)		Allow any unambiguous type of structure	(4)
	(1)		
	(1)		
	(1)		
	(1)		

Question Number	Answer	Additional guidance	Mark
22 (b)(ii)	A description that makes reference to any two from the four following points:		(2)
	 Peak at 3750 – 3200 (cm⁻¹) due to O-H bond present in reactant / absent in product (1) 	Allow two peaks quoted or two bonds for one mark	
	 Peak at 1000-1300 (cm⁻¹) due to C-O bond present in reactant / absent in product (1) 	Allow any wavenumber or range of wavenumbers within the allowable range.	
	 Peak at 1669 – 1645 (cm⁻¹) due to C=C bond present in product / absent in reactant (1) 	Turige.	
	 Peak at 3095 – 3010 (cm⁻¹) due to C-H bond present in alkene in product / absent in reactant (1) 		

Question Number	Answer	Additional guidance	Mark
22 (c)	Longest chain has eight carbon atoms, with terminal OH group (1) rest of structure correct (1)	Accept structural, skeletal or displayed formulae Ignore connectivity except O-H-C Allow 1 mark for correct displayed formulae with missing hydrocarbon hydrogens Allow 1 mark for correct structure of 2,6-dimethylhept-5-en-1-ol	(2)

(Total for Question 22 = 10 marks) Total for Section B = 40 marks

Section C

Question Number	Answer	Additional guidance	Mark
23 (a)	$CH_3CH_2CH_2OH + 2[O] \rightarrow CH_3CH_2COOH + H_2O$	Ignore state symbols even if incorrect	(1)
		Allow multiples	
		Allow 2 correct equations via aldehyde	
		Allow molecular formulae	
		Ignore reagents above the arrow	

Question Number	Accepta	ble Answer	Additional Guidance	Mark
*23 (b)	and logically structured answer reasoning. Marks are awarded for indications answer is structured and show		Guidance on how the mark scheme should be applied. The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	(6)
	The following table shows how for structure and lines of reason	the marks should be awarded oning Number of marks awarded	In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 mark for reasoning, and 0, 1 or 2 indicative points would	

П	for structure of answer and	score zero marks for reasoning.	
	sustained lines of	Score zero marks for reasoning.	
	reasoning	If there is any incorrect chemistry,	
Answer shows a coherent	2	deduct mark(s) from the reasoning. If	
logical structure with linkages		no reasoning mark(s) awarded do not	
and fully sustained lines of		deduct mark(s).	
reasoning demonstrated			
throughout		Comment: Look for the indicative	
Answer is partially structured	1	marking points first, then consider the	
with some linkages and lines of	·	mark for the structure of the answer	
reasoning		and sustained line of reasoning.	
Answer has no linkages	0		
between points and is			
unstructured			

Indicative content	I2 can be scored independent of I1
 The higher the concentration (of acid or Cr₂O₇²⁻) the higher the rate Because the collision frequency increases 	must be linked to heating / higher temperature.
3. The higher the temperature the faster the rate4. Because more particles have an energy greater than the	Allow 'more effective collisions',
activation energy / more successful collisions	Allow 'only propanoic acid is formed' / 'no propanal is formed' as alternative for 'complete oxidation' in I5 and I6
5. Excess / concentrated oxidising agent ensures complete oxidation	Ignore any reference to pressure
6. Heat under reflux ensures complete oxidation	

Question Number	Answer	Additional guidance	Mark
23(c)	 colour of the potassium dichromate(VI) / chromium(III) will mask the colour of the indicator or 	Ignore references to 'not a sharp colour change'	(1)
	the reaction mixture will contain hydrogen ions / acid (present from the oxidising agent)	Allow any named mineral acid	

Question Number	Answer		Additional guidance	Mark
23(d)(i)	An answer that makes reference to the following poir	nts	Colours in the reverse order scores one	(2)
	• colourless	(1)		
	to			
	• (pale) pink	(1)	Do not award red / purple	

Question Number	Answer	Additional guidance	Mark
23(d)(ii)	An answer that makes reference to two of the following points: • First titre likely to be a rangefinder / rough titration /	Allow 'not added dropwise' (near end	(2)
	 estimate (so done quickly) (1) There was an air bubble (in the burette jet which fills before the titration starts) (1) Burette rinsed with water (rather than sodium hydroxide) (1) 	point) / 'overshot at end point'	
		Allow 'some water still in the burette after rinsing' Ignore pre-titration errors parallax errors water in conical flask	
		Do not award lack of swirling of conical flask water in pipette	

Question Number	Answer		Additional guidance	Mark
23(d)(iii)			Example of calculation	(5)
	calculation of average titre	(1)	(22.20 + 22.10) / 2 = 22.15 cm ³	
	 calculation of moles of NaOH(aq) in average t deduction of moles of propanoic acid in 25.0 		(22.15/1000) x 0.00668 = 1.47962 x 10 ⁻⁴ (mol)	
	(1)		1:1 reaction so = 1.47962×10^{-4} (mol)	
	calculation of moles of propanoic acid in 250	cm ³ (1)	$1.47962 \times 10^{-4} \times 10 = 1.47962 \times 10^{-3} \text{ (mol)}$	
		(-)	74 (g mol ⁻¹)	
	 Evidence of correct M_r 	(1)		
	 calculation of mass of propanoic acid in the sample 	(1)	$1.47962 \times 10^{-3} \times 74 = 0.10949 \text{ (g)}$	
		(-)	= 0.109 (g) / 0.11 (g)	
			Correct answer with no working scores 5	
			Final answer to 2 or 3 SF	
			Allow TE at each stage	

Question Number	Answer		Additional guidance	Mark
23(d)(iv)			Example of calculation	(2)
	calculation of mass of propanoic acid in mg	(1)	$0.109 \times 10^3 = 109 \text{ (mg)}$	
			Comment	
			This mark may be evident in d(iii)	
	calculation of mass of propanoic acid in mg kg ⁻¹ and	(4)	109 x 20 = 2180 (mg kg ⁻¹)	
	comparison to limit	(1)	so within permitted range M1 is subsumed by M2	
			Allow TE from (d)(iii)	
			Ignore SF except 1 SF	

Question Number	Answer	Additional guidance	Mark
23(d)(v)	An answer that makes reference to one of the following points:	Ignore harmful	(1)
	 (below the limit) the food would become mouldy (too quickly) / would not stop the food decomposing / would not be an effective preservative 		
	 (or above the limit) the food tastes bad / becomes (too) acidic / becomes inedible / becomes corrosive / becomes toxic 		

(Total for Question 23 = 20 marks)
Total for Section C = 20 marks
TOTAL FOR PAPER = 80 MARKS